I am entirely fascinated by the Earth/Lunar relationship, and long have been fascinated by the thought of bounding along the lunar surface to explore. The more I research about the Earth’s moon, the more I find it to be precious and sacred, especially in regard to it’s tidal and gravitational effect on the planet where we hail from. The differences between the two astral bodies is stark, yet they exist as a symbiosis that prolongs both of there time in space, and ours. The Earth has many defenses against the perils of space travel, the moon to keep it stable along the ever fluxing journey, is one of them. Without the Earth, the small silver orb would likely be swallowed by the local star, or perhaps be adopted as another lunar companion by one of Earth’s siblings like Jupiter.
By defenses against space travel, I mean Earth generates it’s own Electro-Magnetic field to shield the many precious species housed on and within it’s skin from the constant threat of radiation. A somewhat dense atmosphere shields yet more radiation and helps to burn up incoming projectiles by slowing them with atmospheric friction. Large oceans of liquid absorb vast amounts of solar energy acting as heat sinks so the rest of the planet’s ecosystem does not have to bear the effects as directly. Finally one of the most important defenses the Earth has it’s its liquid core, and the hydraulic dispersion and absorption mechanics of a it’s tectonic mantle. The planet we live on is an incredible being, miraculous by every definition we have thus far generated or observed. The Earth’s companion body, is in my belief, much more fragile and susceptible to damages than generally regarded. Damages we are now more able than ever to inflict upon it. By observing human history, and the destructive nature of human business conducted at unrelenting pace, I have great concern for our near future interactions with the Moon. Treating our interactions with the overtly risky mentality of the “Space Race” is in my cautious mind, a mistake. The Moon does not have tectonic flexibility to absorb haphazard impacts like the Earth does. Granted, it has been crashed into time and time again by meteors and other debris, and we cannot yet control or defend it against those things. We can however protect the earth’s gravitational counterweight from our own actions. My two main concerns are with human mining practices, and minor (or major) orbital trajectory alterations. Theoretically the Moon is like a titanium coated crystal. Though Texas sized plates of titanium on the lunar surface will hold up against massive impacts from meteorites, that sturdy shell may be compromised once human mining efforts have generated fissures in the hard but brittle material. Titanium is very hard, but once it cracks, it cracks in severe ways. We still don’t “officially” know what the subsurface of the moon, or it’s core are comprised of or how it is structured. In theory the resonating effects of previous lunar landings inform us of a specifically tuned mineral structure. This kind of structure can be very strong, unless one component of that structure is altered, or if the right (or wrong) resonant frequency is introduced to it. Perhaps it is not entirely crystalline or metallic, and will allow us to bore within without causing too much damage to the overall structure of the sphere. We don’t yet know, or don’t yet “officially” know. The point is, let’s not plan or invest in too much lunar industrialization until we know. We need greater survey data and public transparency surrounding the Earth’s moon before we turn it into a mining hub, in my opinion. I am not the only one however. There are many indigenous cultures and visionaries that have relayed visions of the moon being fractured. There are also many depictions of this horrible possibility in science fiction, so the caution exists already. I would simply like to reiterate the necessity for caution in the upcoming years as humanity accelerates it’s ventures to the nearest extraterrestrial body. Personally, I think mining in space should be directed toward the nearest asteroid fields, though I recognize and acknowledge the inherent difficulties that come with that prospect. I still see it as preferable to the risks we pose to the moon with our historically and contemporarily horrible industrial practices. Our disregard for the well being of our own home world is asinine as it is, but the Earth is regenerative. Applying this same careless, “profit first” mentality to the Moon is utterly unwise. It may lead to rapid unrepairable disaster. Losing a thousand year old redwood is tragic enough, but watching the Moon split into pieces is something we must do all we can to prevent. Let us posit the hypothetical that the moon is indeed structurally sound enough to withstand a limited amount of human mining. There is also the possibility of our impacts and interactions offsetting the actual placement of the Moon relative to the Earth. Though we may not have a broad enough observatory perception to fully track these potentially minor alterations, every interaction does indeed generate a reaction. Even a minor alteration of the Lunar trajectory, would likely have significant impact on the tidal “regularity” here on Earth. We are definitely not prepared for those kinds of changes. Do we have the sensory equipment to track these kinds of changes, and do we have a plan for correcting them if we do impact the orbital relationship? Does that plan include just running into the moon more in order to shove it back to where it was, compensating for the exponential alterations made in it’s path of motion since the initial offset? It all sounds a bit like the kids that thought it would be fun to play baseball inside, even though Mom told them not to, and then the window breaks. Let’s not hurry to make these kinds of mistakes. Make industry wait very patiently, while we gently survey the Lunar surface and inner structure first. Again I reiterate, that asteroid mining poses less direct risk to the planet Earth. We may lose some un-piloted vessels, we may even lose some people. A tragic and ever present risk especially in space travel. However mining asteroids leads to generally less risk of destabilizing our entire path of surviving as a planet. Another concern I have pondered is the matter of resonant disruption. Human interaction with the Lunar body has proven that the silver orb “rings” or resonates like a bell when impacted. Perhaps the moon really is just a big giant titanium bell. It’s mass suggests otherwise, but it could just be a very thick bell. Maybe it is more like a massive geode, with inward facing crystalline formations within the hardened shell. Crystalline structures often exhibit resonant qualities due to the consistency of their molecular organization. Now consider human mining operations set up on the lunar surface. Let’s say we don’t notice the impact of just one facility, or we deem it minor enough to continue development. Fifty years later, there are several hundred facilities constantly grinding and rotating, and impacting the Moon. At this point there are generations that have never known another Luna. The industries these facilities feed are given all manner of excuse to continue operation despite growing concerns of mass displacement and the increasing resonant frequency humming throughout the Lunar body. But as we have seen, industry “must” continue to serve the “economy”. An economy that won’t exist if we disrupt this planet’s natural processes enough. However one day, a cargo vessel landing on the Moon experiences an engine failure, and crashes into the humming orb. The impact and explosion of the vessel disrupts the continuous vibration of human Lunar industry, sending a shockwave throughout the crystalline structure of the Moon, that results in massive fractures and a complete dispersal of the moons stable structure. What then? In essence, my cautionary tale here is that as a species completely reliant on this planet and it’s Lunar gravitational counterweight, we must approach our interactions with the Moon with the utmost care. Personally, I would suggest only low impact and observatory installations. Gently paced survey and exploration of the Lunar body and its interior are sound endeavors. Also scientific study of low gravity impact on Human health, as well as variance of plant growth in lowered gravity are worthy studies. I don’t think mining the Moon is or should be appropriated as a necessary endeavor. Setting our sites for the nearest asteroid concentrations is far more sustainable, and posits immensely less risk to life on Earth. Not that many industries care much for life on Earth, but we, life on Earth… do. NR I got the chance to live in the woods of Washington state for a little while. It was a dream come true for me, and I spent as much time while there studying the flora and fauna as I could. One of my favorite observations were the silver haired bats. They used to fly across the porch, and I could stand in the dark as they hunted insects right next to my head. I went to take the recycling out one night and collided with one once. We were both startled, but politely apologized and went about our activities. On other nights I would stand out in the open under the moonlight and play guitar. I began to notice that the bats would tend to hunt in circles more consistently around where I was emitting guitar sound, especially acoustic bass guitar. I ran many experiments over the course of a year’s time and I don’t think they would flock to the sound, but would concentrate around it if they were already out and catching bugs.
I would move around and found that they would move to where I was and circle overhead. I theorized that they were perhaps using the sound waves emitted from my guitar as extra “light” to find their prey. I know that the sound waves are in a very different frequency than their sonar systems, but their sensitivity to sound likely incorporates any sound within their field of perception. It felt a little like I was emitting a soft general light that brightened the overall vicinity, while they still emitted their own headlamps for direct tracking. I worried that I was perhaps interfering with them so I kept my experiments brief, but the results were consistent. They were generally drawn closer to the externally emitted sound, despite having a fully open sky to continue hunting in. I did not get recordings of any kind, so I made this artistic depiction of the experience. I hope to try again some time. Bats are important creatures as both insect regulators as well as pollinators. Bats are responsible for some very specific plant pollination, yet still get a bad reputation from media and ignorance. They face some serious dangers of their own like white nose fungus, and human habits of habitat destruction. Do some research if you are averse to bats. They are adorable, helpful, and fascinating creatures. Enjoy. Thanks. NR Reef cooling towers
The rapid bleaching of coral reefs on Earth is another in a long list of modern ecological catastrophes. A major contributor to coral bleaching is an average rise in oceanic temperature. Theoretically, to counteract this rise in temperature, self-powered refrigeration towers can be set up in grids within and surrounding reefs to bring local temperatures to optimal conditions for reef health and regeneration. Above-water portions of the towers will house solar and wind generation devices, as well as service and monitoring panels. Below-water portions will include tidal generators and reinforced shrouding to prevent refrigerant leakage. Each tower will emit a temperature colder than target water temperature, and the cumulative radiating effect of the network of towers will theoretically bring localized water temperature to optimal conditions for coral health. The network of refrigeration nodes will remain in constant communication in order to monitor flux in natural conditions, weather events, and to compensate for towers in need of repair or calibration. Small platforms and storage capacity above water provide surveyors and field scientists with access to work surfaces, and stored equipment for ongoing experiments and maintenance. Periodic cooling towers (perhaps 1 in 20) within a network of cooling towers, will be equipped with subaquatic observation capsules. These capsules will allow human beings to enter an oxygenated and climate controlled pod to conduct observatory experiments, and as emergency shelter to endure storms. The experimental technology can be tested in a very small grid, and extended only if positive result is yielded within the climate controlled area of reef. This is a possible local solution to protect critical reef habitats as the overall oceanic temperature continues to rise. This will not necessarily reduce overall oceanic temperatures, but will shield these diverse living areas from the increasingly harsh natural conditions on Earth. An optional warming ability would aid in combatting any but the most extreme conditional variances. Should some unforeseen cooling event occur in reef restoration areas, the towers would be able to warm the surrounding water in order to maintain stable ambient temperatures and protect the local biome. Coral reefs will still have a myriad of adversities to overcome, like water PH variation due to industrial spills, leaks, and runoff, constant and rampant pollution, the possibility of fallout from nearby warfare, and gross diminishing air quality on Earth. These units would simply be a gentle shield in an effort to guard the biodiversity within and among coral reefs. The concept is simple, and the towers can be designed in innumerable forms. The more important factors are reliability of onboard systems, durability, and most importantly a positive proof of concept. This is simply a concept generated from personal contemplation. I am not a manufacturer, and have no access to oceanic regeneration labs. This is speculation on a possible solution to a pertinent, contemporary catastrophe. I encourage those of means and with access to resources to test the concept, and even begin development of such devices. I would love to see more steps taken to protect Earth’s fragile coral reefs. Enjoy. NR |
Nicholas RodriguezArtist, designer, musician, writer, craftsman, nature geek... Archives
March 2024
Categories
All
|